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Facile entry into the 3H,9H-bis[1,2,4]triazolo-[1,5-a:5 0,1 0-d]-
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Abstract—A facile, one-pot reaction between 3,4,5-triamino-1,2,4-triazole (guanazine) and cyanogen bromide provides a new high-
nitrogen example of the 3H,9H-bis[1,2,4]triazolo[1,5-a:5 0,1 0-d][1,3,5]triazinium system, the 2,3,5,6-tetraamino-9-imino derivative (3)
as a quaternary bromide salt.
� 2006 Published by Elsevier Ltd.
Scheme 1. Hypothetical cyclization of guanazine by cyanogen
bromide.
1. Introduction

In a previous limited-distribution US Government
report,1 we described a facile and unexpected formation
of an example of the then unprecedented 3H,9H-
bis[1,2,4]triazolo[1,5-a:5 0,1 0-d][1,3,5]triazinium system
from a one-pot reaction between 3,4,5-triamino-4H-
1,2,4-triazole (guanazine, 1) and cyanogen bromide.
Anders and co-workers have since reported in the open
literature about independent preparations of different
derivatives of that system from the amination reactions
of 9H-bis[1,3,4]thiadiazolo[3,2-a:20,30-d][1,3,5]triazinium2

and [1,3,4]thiadiazolo[2,3-d][1,2,4]triazolo[1,5-a][1,3,5]-
triazinium3 derivatives, the former of which were
prepared via a two-step sequence from reactions of
thionyl halide, aldehydes, and pyridine to make 1-(halo-
alkyl)pyridinium halides followed by the reactions of
these intermediates with 2-amino-1,3,4-thiadiazoles.4

Here we describe our alternative preparation of the
5/6/5 tricyclic ‘NNN’ system (using the nomenclature
of Anders and co-workers3 for this trinuclear, that is,
tricyclic, system).

Cyanogen bromide has been used as a carbon-insertion
reagent between vicinal diamines to make aminoazoles,
for example, with C,C-diamines to make 2-aminoimid-
azoles5 or C,N-diamines to make 3-amino-1,2,4-tri-
azoles.6 Thus, CNBr might be similarly predicted to add
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to guanazine (Scheme 1), producing the 7H-1,2,4-tri-
azolo[4,3-b][1,2,4]triazole system—as its 3,6-diamine 2
(or a guanidino tautomer)—a binuclear (bicyclic) skele-
ton, which had been prepared alternatively, by Potts and
Hirsch,7 via the reaction of triaminoguanidine with
cyanogen bromide, producing the 3,6,7-triamine.

However, we discovered that the guanazine–cyanogen
bromide reaction (Scheme 2) instead unexpectedly pro-
duced a tricyclic quaternary salt, 2,3,5,6-tetraamino-9-
imino-3H,9H-bis[1,2,4]triazolo[1,5-a:5 0,1 0-d][1,3,5]triazi-
nium bromide (3).8 The product was characterized by X-
ray crystallography9 (Fig. 1) as well as spectroscopically
and by elemental analysis. That the charge in the tri-
azinium ring is not evenly delocalized is indicated by
an asymmetry of the tricyclic structure’s bond lengths
(Fig. 2) as well as the distinct absorptions seen in the
1H and 13C NMR spectra at room temperature—three
peaks for NH2 and five different carbons—unlike one
of Anders’ symmetrical ‘NNN’ derivatives (their 9k),
which showed equivalent substituents according to
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Scheme 2. Cyclization of guanazine by cyanogen bromide.

Figure 1. A drawing of 2,3,5,6-tetraamino-9-imino-3H,9H-bis[1,2,4]-
triazolo[1,5-a:5 0,1 0- d][1,3,5]triazinium bromide (3) hydrate.

Figure 2. Bond lengths (Å) of non-hydrogen-bonds in the cation of 3.
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NMR.3 Also, interestingly, the 1H NMR spectrum shows
a temperature dependence, specifically, coalescence of
the two N–NH2 signals at an elevated temperature
(333 K in DMSO-d6), indicating an enhanced delocaliza-
tion of the electron density.

The course of reaction leading to this product requires
that CNBr must initially attack N1 of guanazine, rather
than the 4-amino substituent, analogous to the proton-
ation of 4-amino-1,2,4-triazole at N1.10 The cyano sub-
stituent links two guanazine rings (at N1), which
further cyclize via their 5-amino substituents—perhaps
via an imine tautomer under the reaction conditions—
to form the 1,3,5-triazinium ring following the elimina-
tion of ammonia.

This formation of a fused triazoloazinium quaternary
salt is reminiscent of the unexpected cyclization by
cyanogen bromide of 4-amino-3-(2-aminophenyl)-1,
2,4-triazoles between the phenyl 2-amino substituent
and N1 of the triazole ring (rather than its 4-amino sub-
stituent). This produces 1,5-diamino-1H-1,2,4-tri-
azolo[1,5-c]quinazolium bromides, reported by Jarvis
and co-workers,11 instead of the expected triazepines.

In the course of elucidating this system, we have also
developed a superior procedure for the preparation of
guanazine (1). We employed the chemical scheme
devised by Child:12 the reaction between commercially
available dimethylcyanamide and hydrazine produces
guanazine in one pot (with dimethylamine as by-prod-
uct). By conducting the reaction in 2-methoxyethanol
solvent instead of with neat reactants, the reaction pro-
ceeds much more cleanly and the workup is facilitated.13

The other recent preparations of 1 suffer the disadvan-
tage of requiring toxic heavy metal oxides (lead or
mercury) for the conversion of thiosemicarbazide
derivatives.14
2. Conclusions

A facile, one-pot preparation of 3 provides the 3H,9H-
bis[1,2,4]triazolo[1,5-a:5 0,1 0-d][1,3,5]triazinium system
in a highly functionalizable form, that is, one with five
nitrogenous substituents (NH or NH2) that may be used
for numerous chemical conversions or extensions of this
trinuclear (tricyclic) high-nitrogen skeleton. A superior
preparation of guanazine (1) is reported.
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Anders, E. Tetrahedron 2005, 61, 673–685.

4. Anders, E.; Wermann, K.; Wiedel, B.; Günther, W.; Göls,
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